

Introduction, overview and present status of inorganic scintillators

christophe.dujardin@univ-lyon1.fr

Université de Lyon, Université Lyon 1, CNRS, UMR5620, LPCML 69622 Villeurbanne, France

LABORATOIRE DE PHYSICO-CHIMIE DES MATERIAUX LUMINESCENTS

LPCML

Introduction

How to detect ionizing radiations?

Ionizing radiations: X-ray, gamma-ray, α , neutrons, ions, electrons, VUV....

Detection requires electric pulse

Interaction radiation-matter: Ionizing -> electrons extraction

Direct charge detection

Indirect charge detection

Geiger counting system, Semi-conductor

Charges to light conversion And light detection (PMT, CCD, SiPM...)

scintillation

Introduction

How to detect ionizing radiations?

Several scintillator classes

Organic solids

Liquids

Kamiokande (neutrino detection)

Inorganic solids

PbWO₄ crystals: CERN

Commercial plastic Scintillators (Saint Gobain as exemple)

Introduction

History of scintillators connected to the detectors

Old style

History of scintillators connected with detectors

In parallel, high energy physics (L3 with BGO) and then CMS (starting program mid 80's) Conference series on Inorganic scintillators and their applications:

> SCINT 1991-93-...-2009-2011

Aim: Stimulating research on new materials

Crude processes description in 3 stages

Yield = β .S.Q avec β = $E_{\gamma}/(2-3 * E_{G})$

The amount of emitted light should be proportional the absorbed energy particle

But some strong non linearities are observed

Under γ -ray excitation

Why so many materials ?

1 page of SCINT 1997 proceeding

GdF ₃	307	LaLu0,:Ce	343	քուն	1 .	289 226 242	RhGd Br	987 990	
GdF3:Ca:Pr	358	LaLu0,:Pr	343	Lu ₂ 0	-3 1.:Ce	289	RbGd Br ·Co	9 990	
GdF3:Sr:Pr	358	LaMgB _s O ₁₀	3.318	Lu ₂ 0	33.00 8.	3 311	RhGd_Cl.	330	
Gd _{9.33} -8.67(SiO4)6O2	307	LaMgB.0:Ce	3.318	Lu ₂ C	3 Co	3, 311	RbGd Cl ·Co	990	
GdMgB ₅ O ₁₀	307	La0Br:Tm	28	In S	53.00 80 // SO)	3 18 32 95 289 326	Rh In/D0 \	3 259	
GdOBr	307	LaPO.:Eu	358	Tu S	80 ·Ce	18 28 22 95 289 343	Du Lu/D0) : Co	958	
GdP0₄	307	La ₂ 0 ₂ S:Eu	28	Lu ₂ s	10,	18	11131141 04/2.00	338	
GdTa0₄:Tb	28, 358	La ₂ 0 ₃	289	Lu ₃ n	1.0	28	ShI.	358	
Gd ₂ O ₂ S	3, 307	β-La ₂ S ₃ :Ce	311		1,012:00		ScB0.	3	
Gd202S:Tb	28, 51	LiB ₃ 0 ₅ (LB0)	3, 139	Met	ı	- 131	ScP0. Dv	358	
Gd ₂ O ₃	195, 295	LiBaF ₃	322	Mg.	, P.O.: • 3(H.O)	358	ScP0.:Er	358	
Gd ₂ SO ₆	307	LiBaF ₃ :Ce	3, 121, 322, 349		- 2-1(-2-)		ScP0.:En	358	
Gd ₂ SiO _{5.} (GSO)	18, 55, 295, 307	LiBaF3:Ce:Br	322	NaC	1	103	ScP0.:Fe	358	
Gd ₂ SiO ₅ :Ce	18, 28, 157, 295, 299, 307	LiBaF ₃ :Ce:K	322, 349	NaG	dF.	307	ScP0.:Nd	358	
Gd ₃ Ga ₅ O ₁₂ :Tb	28	LiBaF ₃ :Ce:Rb	349	NaG	dSiO.	307	ScP0.:Ni	358	
Gd ₃ Sc ₂ Al ₃ O ₁₂	18, 307	LIF	51, 372, 392	Nal	TI)	3, 13, 18, 51, 63, 73, 91,	ScP0.:Pr	358	
Glass HBLAN:Ce	376	LiF:Mg	392		. ,	115, 153, 157, 295, 299,	ScP0.:Sm	358	
Glass NAP:Ce	376	LiGdF₄	307			330, 338, 380	ScP0.:Tb	358	
		LiLuSiO ₄	3, 326	NaL	uF2:Nd	358	ScP0.:V	358	
HfBaF ₆	143	LiLuSi0₄:Ce	3, 326	NaY	F2:Nd	358	ScP0 ₄ :Yb	358	
HfCeF ₇	143	LiNb0 ₃	271	Na ₂ 0	CO ₃	195	SnS04	358	
Hf ₂ BaF ₁₀	143	LiYSi04	3, 326	NH	Br(Tl)	51	SrI ₂	358	
Hf ₂ CeF ₁₁	3, 143	LiYSi04:Ce	3, 326	NH₄I	H ₂ PO ₄	51	Sr ₂ B ₅ O ₉ Br:Eu	334	
HfF ₄	143	Li ₂ B ₄ O ₇	3	NH4	(T I)	51	Sr ₂ B ₅ O ₉ Cl:Eu	334	
HfTiO ₄	358	Li _s Gd(BO ₃) ₃	3, 307	(NH ₄)₂S0₄(TI)	51			
		Li ₆ Y(BO ₃) ₃	3				TbCl ₃	358	
K ₂ LaCl ₅	18	LuAlO ₃	3, 32, 343	PbF	2	248, 395	TbF ₃	358	
K ₂ LaCl ₅ :Ce	330	LuAlO3:Ce	18, 28, 32, 343, 358	PbM	lo04	73, 362	TbF3:Ce	358	
K ₃ Ce(PO ₄) ₂	358	LuB03	3, 303, 358	РЪН	P0₄:Tb	358	TbP0₄:Gd	358	
$K_3La(PO_4)_2$	358	LuB0 ₃ :Ce	303, 358	PbS	0 ₄	28	ThCl ₄	358	
$K_3Lu(PO_4)_2$	3. 358	LuBO ₃ :Pr	303	PbW	/0,	3, 13, 73, 95, 111, 115,	Ti0 ₂	358	
K ₃ Lu(PU ₄) ₂ :Ce	358	LuF ₃	3			167, 171, 177, 183, 187,			
KH ₂ PU ₄	51	LuP0₄ (LOP)	18			191, 195, 199, 203, 207,	YA103 (YAP)	18, 32	
KMgF ₃	121	LuP0₄:Ce	28			211, 215, 219, 223, 226,	YAIO ₃ :Ce	18, 24, 32, 95, 353	
1-00		LuP04.Dy	358			230, 236, 240, 244, 248,	YA13B4012	3	
LaBU3	3	LuP0₄:Eu	358			251, 255, 259, 263, 267,	YB03	3	
LaB ₃ U ₆	3, 318	LuP04.Eu:Cd	358	· · ·		271, 274, 278, 358, 362	YGdP0₄	358	
LaB ₃ U ₆ :Ue	318	LuP04:Fe	358	PbW	′0₄:Ca	236	YMgB ₅ 0 ₁₀	3, 318	
Lar ₂	18	LuP04:Nd	358	PbW	/O₄:Ce	167	YMgB ₅ O ₁₀ :Ce	318	
Lar ₃	135, 143	LuP04:Pr	358	Pbw	/0 ₄ :La	167, 171, 203, 215, 362	YPO₄:Dy	358	
LaF .De	95	LuP04:Sm	358	Pbw	′U₄:Lu	203	YPO₄:Eu	358	
Lar ₃ .rr	398	LuP04:Tb	358	PbW	U4:ND	236, 251, 362	YPO₄:Fe	358	
Lar ₃ :PT:Ba	358	LuP04:LuP0	358	PbW	/0₄:Y	203	YP0₄:Nd	358	
1410 ³	3, 343	LuTa0₄:Tb	28, 358	PbW	U4:XP	236	YP0₄:Pr	358	
408					409				

Why so many materials ? It does not exist universal scintillators: Depending on the application, required performances as well as required shapes are strongly different. **Detection mode** Counting mode Integrating mode (single event detection) (exposure time / frame) --> afterglow? --> Fast decay Imaging PET/SPECT: localization Energy to detect of a known radionucleïde Low Energy (PET, 511 10³ eV) High Energy (CERN, 10¹⁸ eV) --> Yield

--> Density

--> Density --> Yield

Homeland security: Detection of a unknown radionucleïde

First rank Parameters

and: Mechanical and chemical stability, emission wavelength, cost, mass production, radio-isotopes purity, thermal stability, shaping possibilities

PET: Positron Emission Tomography

Homeland security

X-ray imaging for medical and high resolution imaging

Dark Matter search

Neutrino spectroscopy

New generation of calorimeters

HTC:

PET

2 γ (511 keV) simultaneous, and opposite directions to detect

"New": Lu₂SiO₅:Ce³⁺ = 40ns, 25000ph/MeV, 7.4 g/cm³

Easy to grow at the industrial scale

from C.Melcher, CTI

Possible evolutions

The yield depends on the forbidden band width

-> Saint-Gobain, BrilLance

PET

PET activity goes toward time of fligth

Time of fligth: noise reduction

Kyba et al Scint 2007

Require time **resolution <200ps** Depends on the whole chain crystal-photodetector-electronic and light collection->

Derenzo et al, IEEE TNS 2000

September 11th 2001: The US funds are redirected toward « homeland security »

Desired properties: be able to check airports, harbors, highways in terms of radio-elements detection

Criteria: energy resolution, density and decays are a bit less important

--> Huge activity on Eu²⁺ doped systems: large screening investments

combinatory chemistry

Automatic measurements

X-ray diffraction
X-ray induced luminescence

Optical excitation and emission spectra

Band gap measurement

E.Bourret et al. LBNL, USA, ECS 2010

Topics and applications

Crystal growth facilities

E.Bourret et al. LBNL, USA, ECS 2010

Topics and applications

Example of discovered scintillators

Crystal (1.5" diameter)

Toward high resolution x-ray imaging with synchrotron radiation (1pixel<1 μ m²)

--> Thin Films: high density, yield and optical quality

Liquid Phase Epitaxy: LuAG:Eu³⁺, GGG:Eu³⁺ (CEA LETI) (Thickness from 1 μ m to 25 μ m)

Sol-Gel coating: Lu_2O_3 et Gd_2O_3 doped with Eu^{3+} (LPCML) (Thickness<1 μ m)

X-ray beam detection for monitoring

LTC M

X-ray imaging

X-ray Tomography: LPE, LuAG:Eu³⁺

Paul Tafforeau Laboratoire de Géobiologie, Biochronologie et Paléontologie Humaine (LGBPH) UMR CNRS 6046

Scientific collaborator at the **ESRF** on the beamlines ID19 and ID17 European Synchrotron Radiation Facility Increasing the absorption and preserving the image quality : multi layers with several dopant and spectral filtering

Fig. 8. Demonstration of the spatial resolution achieveable with a scintillator stack consisting of two layers ($15 \times \text{magnification}/\text{NA} = 0.28$ objective). The image ③ is a summation of image ① and ③ detected by selecting the different emissions of the scintillator multi-layer via optical filtering.

T. Martin et al, IEEE TNS, 2009

WIMPs detection (Weakly Interacting Massive Particles)

to summerize

Strange displacement of galaxies -> dark matter (90%) -> WIMPs

WIMPs: resting mass of 10Gev, v=300km/s ->Ec=50keV -> few keV deposition in matter -> Interaction with nucleus (recoil energy)

Temperature increase + scintillation

Expected counting rate<< 1count/day and per kg of detector and a energy deposition between 45 et 55 keV!!!!

Natural radioactive background of body: 100 Bq -> competition with natural background (neutron, β , γ)

Discrimination between electromagnetic particles and (neutron, WIMP)

The ratio between photon signal/ phonon signal depends of the incident particle Photons and β give ionization while WIMPs and neutrons interact with nucleus (recoil)

Shutt et al, PRL 1992

neutron / WIMP discrimination -> interaction with nucleus of various mass. Several scintillating compositions (targets)

neutron / WIMP discrimination -> interaction with nucleus of various mass. Several scintillating compositions (targets)

Double mesurement (quelques mK) Signal « lumière »

Combination of several detectors ->Discrimination γ , β et WIMPs, neutrons.

For the crystals: -radio-isotope purity -Scintillation at low T (few mK)? - homogeneity (1 ton?) - Al₂O₃, LiF, CaWO₄, BGO are under study

Angloher et al, Astroparticle Physics, 2005 et Luca M et al., NIM 2009

Several projects: Cresst, Edelweiss, Eureca... and SUCCESS and Interest for the double β decay

The number of detected solar neutrino is << than the predicted one

Weak interaction cross section of neutrino with matter + natural background = difficult to extract true signal

-> interaction with a nucleus giving rise to clear assignement + spectroscopy

-> one of the solutions: interaction neutrino - Ytterbium

R.Chipaux et al NIM 2002

-> LENS project : Low Energy Neutrino Spectroscopy

Scintillator side: looking for high Yb loaded compounds with a fast response (delayed coïncidence et 50ns) very low radioactive background and high capapility for mass production

Yb³⁺ : known ion for it IR emission (but slow), Yb²⁺ does emit ligth but is rather complicated (P.Dorenbos, J of Phys 2003)

h

New concept for high energy calorimetry

New accelerators ILC: new requirements for calorimeters

New concept: fiber shaped meta-materials

P.Lecoq, CALOR 2008 and Dujardin et. al. JAP 2010

SEE K.PAUWELS talk this morning

ANR INFINHI and FP7/HP2 program

Example of fundamental studies

Yield =
$$\beta$$
.S.Q avec β = $E_{\gamma}/(2-3 * E_{G})$

The amount of emitted light should be proportional the absorbed energy particle

Non-linearity, non proportionnality

It explain why with the same light yield some scintillators exhibit good and bad energy resolutions

Origin: fluctuations of excitation density

Correlation between crystal structure/ defects and performances Example with LuAG:Ce LuAG Comparison single crystal (2000°C)/ LPE films (1000°C) 500 Lu_{AI} antisite Thermoluminescence CF Electro trap Figure 11 (online colour at: www.pss-b.com) LuAI antisite defect TSL intensity (arb. units) in LuAG structure. Resulting electron trap in the material forbid-10⁶ den gap is sketched on the left. Emission band within 300-350 nm due to antisite defect and its competition with that of the Ce3+ center can be derived from radioluminescence spectra at RT upper left. Emission lines around 312 nm and 615 nm in the undoped sample are due to Gd3+ and Eu3+ accidental impurities, respectively. M.Nikl et al, Phys. Stat. Sol. (b) 2008 10⁴ Δ SC-1820 Effects on performances SC-1700 LPE-9300 AG:Ce LPE-18000 Y, AD 10^{2} .=79.9 ns (Ce)+297 ns (AD 150 250 50 isity, a.u. *(E>E Temperature (K) nter 0.01 K_=L/I,x 100 % YAG:Ce SCF Ke (SC) = 6.3 % M.Nikl et al, Phys. Stat. Sol. (b) 2005 K. (SCF) = 0.74 % 1E-Time, ns

Y.Zorenko et al, Rad. Meas. (2007)

Fig. 5. Decay kinetics Ce^{3+} ion (1–3) emission in the band at 530 nm in YAG:Ce SCF (1, 2) and SC (3) at RT under excitation by SR with energies o 3.7 eV (1) and 10.5 eV (2,3). Curve 4—decay kinetics of Y_{A1} AD emission

in the band at 320 nm in YAG SC

h

Development and studies of materials for Scintillation applications: Nice active area including several fields from materials science to imaging systems, medicine....

-> it has to be still developed -> SUCCESS Program

http://www.com/

Effets de la densité d'excitation

Spectres d'excitation autour d'un seuil d'absorption X -> modification forte du coefficient d'absorption -> modification de la densité d'excitation

A.N.Belsky et al, NIM A, 1995

A.N.Belsky et al, J. Of Lum. 1997

Effets importants de la concentration d'excitations sur les processus de quenching et de transfert vers les centres luminescents

90's: A new material is needed for CMS in High energy physics (/BGO was used in L3). PbWO₄ and CeF₃ appear rapidely as candidates Requirements: high density, fast decay, yield, mass production capability PbWO₄ won

At the same time: discovery of LSO:Ce³⁺, for oil drilling, but is also of interest for PET imaging (médical = \$ -> industrial interest)

Up to 1997, activity on PbWO₄ and then it decreases

Topics and applications

