Features of Ce^{3+} 5d – 4f luminescence from nanosized La_{1-x}Ce_xF₃ crystallites

<u>G. Stryganyuk</u>, T. Shalapska¹, V. Zakordonskyj¹, A. Gektin, V. Vistovskii¹, A. Voloshinovskii¹

Institute for Scintillation Materials, NAS Ukraine, Kharkiv, Ukraine ¹Ivan Franko National University, Kyryla i Mefodiya st., 8, Lviv, 79005, Ukraine

Results and Discussions

During high-temperature annealing the CeF₃ nanoparticle embedded in LaF3-Ce nanoparticles is formed. Under the assumption of small size of nanoparticles the excitation spectra of CeF₃ and LaF₃-Ce will be coincide, because the saturation effect and surface losses effect are absent. This feature has been observed for the excitation spectra of CeF₃ thin films with thickness around 352 nm and CsPbCl₃ nanocrystals embedded in CsCl host. If we state about the coexistence of CeF3 and LaF3-Ce nanophases, other peculiarities of their luminescence can be explained. In particular, the decay curve of long-wave luminescence at the excitation of about 7 eV has long decay times inherent to a recombination luminescence. The appearance of a recombination process requires the participation of the band charge carriers. Therefore, we assume that the band with a maximum of about 7 eV could be caused by the $2pF \rightarrow 5d$ transitions, where the 5d-band has to be considered as conduction band. The threshold around 7.6 eV could correspond to $4f \rightarrow 6s$ transitions.

Introduction

The LaF₃-Ce is well known model system for the study of luminescence processes in scintillation materials. The study of this crystal in a considerable degree provides an opportunity to elucidate the energy transfer peculiarities in CeF₃ crystals and to explain the relatively low scintillation efficiency by the excitation mediated preferably the direct excitation of cerium ions.

Experiment

LaF₃-Ce nanoparticles as well as LaF₃-Ce coated by LaF₃ shell (LaF₃-Ce/LaF₃, core/shell nanoparticles) were synthesized by the chemical reaction of lanthanum nitrate and cerium nitrate with ammonium fluoride and citric acid. Luminescent-kinetic studies of LaF₃-Ce and LaF₃-Ce/LaF₃ nanoparticles were carried out using SUPERLUMI facility, which provided the spectrum measurements with subnano-second time-resolution within 4–20 eV energy range for the luminescence excitation spectra and 6–1 eV for the luminescence spectra.

