

Scientific activity in scintillation researchat NCBJ Świerk, Poland

M.Moszyński National Centre for Nuclear ResearchŚwierk-Otwock, Poland

Principle of the light output measurements

The light output of scintillators is determined correcting the measured number of photoelectrons (phe) or electron – hole (e-h) pairs produced by a scintillation light for the integral quantum efficiency of a photodetector.

The present work….

The study was triggered by a comparative test of the light output of LSO and BGO crystals done in **2006** by Chuck Melcher at the Tennessee University and by us at Świerk, in Poland. Three calibrated PMTs were used **R2059 (TU), XP2020Q and R6231 (Świerk).**

Light output [ph/MeV]

BGO – light output measured withdifferent photodetectors

A good agreement of the measured light output with the XP2020Q and S3590-18 photodiode to those of the earlier measurements.

Evident excess of the light output measured with the new Hamamatsu PMTs.

What is the origin of the observed effect?

Photodetectors

S3590-18 ,,,,,,, 300 400 500 600 700 800 900 1000 1100 1200 200 Wavelength [nm]

Photomultipliers

Si photodiode S3590-18 BGO: QE=86%LSO: QE=82.7

Study of the PMT response

• Phe number by pulse height resolution method:

 $\delta^{}_{\rm st}$ = 2.355 \times 1/N $^{1/2}\!\times$ (ENF) $^{1/2}$

ENF calculated from the pulse height resolution of thesingle phe peak:

 $\delta_{\rm spe}$ = 2.355 \times √(ENF $-$ 1)

LSO at XP2020Q, ^Nsphe = 6150±**¹⁵⁰ phe/MeV** $PHR = 3.82\%$, $ENF = 1.09$ **^Nphr = 6300**±**200 phe/MeV**

First experiments in 2006

Final experiments in 2009

Light output of LSO (10x10x5 mm3):

XP2020Q: 28800 ±1500 ph/MeV **29200**±**1500 ph/MeV by PHR method!!**R6231:36900±1800 ph/MeV

by single PHE method

Energy resolution, Non-proportionality

Intrinsic resolution
of scintillators

Non-proportionality is a fundamental
limitation of energy resolution!

Nonproportionality of Compton electrons

 $\mathsf{LYSO}-2$ x 2 x 2 cm^3

close geometry: ~ 1- 6 cmlarge solid angle: ≤ 90º weak sources: ~ 10 - 30 µCi

Nonproportionality of Compton electronsand full energy peaks. Curves are normalized to 662 keV full energy peakof Cs-137.

LaBr3 in comparison to NaI(Tl) crystals

Non-proportionality of $LaBr₃$ and NaI(Tl)

Intrinsic resolution of $LaBr₃$ and NaI(Tl)

Intrinsic resolution of scintillators

 $\mathsf{LYSO}-2$ x 2 x 2 cm 3

 $CsI(TI) - Ø1" x 1"$

Mesured energy resolution corrected for the photoelectron statistic.

Gamma spectrometry at low temperatures

LN $_{\rm 2}$ temperature

Cryostat with NaI coupled to LAAPD

Temperatures down to – 40 ◦C

Non-proportionality of undoped NaI andCsI at liquid nitrogen temperature

Undoped CsI and standard CsI(Tl)

Undoped NaI and standard NaI(Tl)

Udoped NaI at LN $_{\rm 2}$ $_{\mathrm{\small 2}}$ temperature

Exceptional sample of undoped NaI. Integration of the slow component up to 50 µ^s improves dramatically energy resolution, see non-proportionality characteristics.

Modified CsI crystals from Alex Gektin

Note an influence of doping agents or codoping on the non-proportionality characteristics

Light pulse shape of scntillators

Single photon method

0 5 10 15 20 25 30 35 40 45 501E-41E-30,01 0,11+24⁰C+10⁰C0⁰C-10⁰CNumber of counts Time (µ**s)-200C**

Light pulse shape of BC523A liquid scintillators due to γ-rays,thermal nad fast neutrons.

Light pulse shape of CsI(Tl) at different temperatures down to -20 °C.

Light pulse shape of scntillators

Digital scope method

Decay times measured by digital scope gated by full energypeaks and Compton electrons of different energies.

Light pulse shape at LN_2 $_{\mathrm{2}}$ temperature

Fast timing

STACK:ERROR: undefined
OFFENDING COMMAND: II* OFFENDING COMMAND: II* ERROR: undefined