

Scientific activity in scintillation research at NCBJ Świerk, Poland

M.Moszyński National Centre for Nuclear Research Świerk-Otwock, Poland

Principle of the light output measurements

The light output of scintillators is determined correcting the measured number of photoelectrons (phe) or electron – hole (e-h) pairs produced by a scintillation light for the integral quantum efficiency of a photodetector.

The present work....

The study was triggered by a comparative test of the light output of LSO and BGO crystals done in **2006** by Chuck Melcher at the Tennessee University and by us at Świerk, in Poland. Three calibrated PMTs were used **R2059 (TU)**, **XP2020Q and R6231 (Świerk)**.

Light output [ph/MeV]

Crystal	Size [mm]	Św	Knoxville	
		XP2020Q	R6231MOD	R2059
BGO	10x10x1	7700±400	9300±600	9600±500
LSO	10x10x2	33600±1700	38800±1900	39500±2000

BGO – light output measured with different photodetectors

Crystal	Holl, et al.	M.M., et al.		Świerk			Knoxville	
	1988	1997		2009			2009	
Туре	Si PD	XP2020	Si PD	XP2020	Si PD	R6231	XP2020	R2059
					S3590-			
					18			
BGO	8200±350	8300	8020	7900	8000	9350	8600	9900
	±400	±160	±160	±300	±300	±400	±400	±500

A good agreement of the measured light output with the XP2020Q and S3590-18 photodiode to those of the earlier measurements.

Evident excess of the light output measured with the new Hamamatsu PMTs.

What is the origin of the observed effect?

Photodetectors

Photomultipliers

Si photodiode S3590-18 BGO: QE=86% LSO: QE=82.7

800

900

400

500

600

700

Wavelength [nm]

S3590-18

1000 1100 1200

Study of the PMT response

• Phe number by pulse height resolution method:

$$\delta_{st} = 2.355 \times 1/N^{1/2} \times (ENF)^{1/2}$$

ENF calculated from the pulse height resolution of the single phe peak:

$$\delta_{\text{spe}} = 2.355 \times \sqrt{(\text{ENF} - 1)}$$

LSO at XP2020Q, N_{sphe} = 6150±150 phe/MeV PHR = 3.82%, ENF = 1.09 N_{phr} = 6300±200 phe/MeV

First experiments in 2006

Crystal	Size [mm]	Świerk	Knoxville	
		XP2020Q	R6231MOD	R2059
BGO	10x10x1	7700±400	9300±600	9600±500
LSO	10x10x2	33600±1700	38800±1900	39500±2000

Final experiments in 2009

Light output of LSO (10x10x5 mm3):

XP2020Q: 28800 ±1500 ph/MeV R6231: **29200±1500 ph/MeV** 36900±1800 ph/MeV

by PHR method!! by single PHE method

Energy resolution, Non-proportionality

Intrinsic resolution of scintillators

Non-proportionality is a fundamental limitation of energy resolution!

Non-proportionality measured with γ -rays

Nonproportionality of Compton electrons

 $LYSO - 2 \times 2 \times 2 \text{ cm}^3$

close geometry: ~ 1- 6 cm large solid angle: $\leq 90^{\circ}$ weak sources: ~ 10 - 30 µCi Nonproportionality of Compton electrons and full energy peaks. Curves are normalized to 662 keV full energy peak of Cs-137.

LaBr₃ in comparison to Nal(TI) crystals

Non-proportionality of LaBr₃ and NaI(TI)

Intrinsic resolution of LaBr₃ and NaI(TI)

Intrinsic resolution of scintillators

 $LYSO - 2 \times 2 \times 2 \text{ cm}^3$

CsI(TI) – Ø1" x 1"

Mesured energy resolution corrected for the photoelectron statistic.

Gamma spectrometry at low temperatures

LN₂ temperature

Cryostat with Nal coupled to LAAPD

Temperatures down to – 40 ∘C

Non-proportionality of undoped Nal and Csl at liquid nitrogen temperature

Undoped CsI and standard CsI(TI)

Undoped Nal and standard Nal(TI)

Udoped Nal at LN₂ temperature

Exceptional sample of undoped Nal. Integration of the slow component up to 50 µs improves dramatically energy resolution, see non-proportionality characteristics.

Modified CsI crystals from Alex Gektin

Note an influence of doping agents or codoping on the non-proportionality characteristics

Light pulse shape of scntillators

Single photon method

0,1 Number of counts 0,01 1E-3 1E-4 0 5 10 15 20 25 30 35 40 45 50 Time (µs)

Light pulse shape of BC523A liquid scintillators due to γ-rays, thermal nad fast neutrons.

Light pulse shape of CsI(TI) at different temperatures down to $-20 \ \mathbb{C}$.

Light pulse shape of scntillators

Digital scope method

Decay times measured by digital scope gated by full energy peaks and Compton electrons of different energies.

Light pulse shape at LN₂ temperature

Fast timing

ERROR: undefined OFFENDING COMMAND: II* STACK: