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g Applications and material engineering request

guantitative predictions of properties of new
scintillating materials

- Y,

- N

Simple estimation of scintillation efficiency as BSQ
(cascade-transport-center) is only qualitative

\ﬁ, ?)

[ Re-estimation of the role of different stages of energy
relaxation in crystals on the basis of deeper
9 experimental investigation of new materials y

" Contemporary model: Scintillation as collective
interconnected processes of spatial and temporal

evolution of strongly non-equilibrium excited region in

\_ media )
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Spatial scales for processes
in scintillators

f—

Geometry dimensions of media
— macro-, meta- & nano-materials

Overall track length — keV, MeV, GeV

Distances between elementary e-e scattering events
— e-e mfp — function of hot electron energy

-——/7 —

— function of secondary electron kinetic
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Onsager recombination radius

Interaction (quenching) distance R

Activator to activator distances — concentration-/3
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Spatial scales for processes
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Energy deposited within nanoparticles

Total energy deposited as a function of the energy of the primary electron

Total energy deposit (100 nm) (eV)

1008,

100,

104

™~

—n—Total energy deposit (1
—+— Disp of TED (100 nm)
—u— Total energy deposit (5

—+—Disp of TED (5 nm)
100 1000 10000
Energy (eV

Vistovskyy et al. J. Appl. Phys. 112, 024325 (2012)

10 | e {10
Jos
=
1]
10.6
. £
® | {oa &
> =
2 05 T,
5 f 0.2
T @ﬁ_ 1
i 2 1 i i - L—40.0
h 500 oo 150
Manoparticles mean size, nm
\_‘
N - P
— . i - 1 -n_ 1 L —
200 300 400 500 B00
A, M

FIG. 6. X-ray excited luminescence spectra of CaF; nanoparticles of various
size at 300K, Curves: 1-140; 2-60; 3-50; 4-37; 5-28; 6-20nm. The de-
pendence of normalized luminescence intensity on the nanoparticle size is
shown on inset: curve 1—luminescence intensity upon the excitation by
quanta with energy hu,, = 16eV, curve 2—X-ray excited luminescence
intensity.
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e Cascade, thermalization and recombination
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Electron
scattering and
Auger cascade

Recombination
with creation of
excitons and
excited states of
centers

Thermalization of
electrons and
holes

Electrons and holes after cascade of
inelastic scatterings are distributed in
energy (with kinetic energies below E,,
i.e. the threshold of inelastic e-e
scattering) and in space (with
characteristic distances equal to e-e

@n free paths) /




Electron
scattering and
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Thermalization of
electrons and
holes

Electrons and holes are produced as e-
h pairs; each geminate e and h are
created in the same physical point and
then go away from the birthplace
during thermalization (thermalization
distance, which depends on initial

@tic energy) /




Electron
scattering and
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Thermalization of
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Probability and kinetics of
recombination depends on spatial and
temporal characteristics (diffusion of
thermalized excitations with
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Example of structure of excited
region after 30 keV electron
passage
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* Different types of mobilities



Non-proportionality and mobility
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Figure 5. Relative sizes of electron and hole diameters as a fimction of
relative hole mobility. The left side illustrates the distmbutions when the
electron mobility 15 sigmificantly lngher than then hole mobihty, while the
right side illustrates the distmbutions when they have similar mobilities.
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Figure 6. Measured relative light yield at low electron energy for a mumber
of scmtillators (sohd points) and predicted hommosity (solid curve) as a
fimction of diffusion coefficient. Repnnted with permussion from [61]. See
text for defimbions.

W. W. Moses, G. A. Bizarri, R. T. Williams, S. A. Payne, A. N. Vasil’ev, J. Singh, Q. Li,
J. Q. Grim, and W-S. Choong, The Origins of Scintillator Non-Proportionality,
IEEE Transactions on Nuclear Science, vol. 59, issue 5, pp. 2038-2044 (2012)



Spatial distribution of electrons, holes and excitons
due to mobility in e-e passive energy domain

* Two types of carrier mobilities: thermalization length (mobility of hot
electrons and holes) and mobility of thermalized excitations
(electrons, holes & excitons).

* High-energy part of ionization track — individual electron-hole pairs and small non-
overlapping clusters of excitations. Negative role of mobility: the higher the
thermalization length (in comparison with Onsager radius), the lower the
recombination yield (HPGe — the limiting case of high mobility w/o any
luminescence).

* Low-energy part of ionization track — overlapping clusters of excitations. Mean
distance between interacting excitations increases with increase of the mobility of
excitons. Positive role of mobility: the higher the mobility, the lower the quenching
of excitation due to high EE density.

e “Ideal” scintillator: Low hot mobility (high yield of
excitons) and high thermalized mobility (low
interaction).
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 Thermalization length for different types of crystals



Coupled processes of thermalization and spatial
diffusion

Four main functions which characterized spatial diffusion and thermalization:
(1) rate of electron-phonon scattering (inverse lifetime) T—l(Egi”)

(2) mean free path /I(Ee'fi” ) _ V(Eelfi” )T(E(I:in )

(3) spatial diffusion coefficient DR(Eeki”): %VZ(EG‘“” )T(Eeki”) and

equation for Brownian motion ,
d<r

dt

(4) energy relaxation rate S(Egin): DE(Egi”)/kBT and
energy relaxation equation

” _ DR (gL




Coupled processes of thermalization and spatial
diffusion
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Csl band structure and phonon
dispersion
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LaBr; band structure (w/o La4f) and
phonon dispersion

l.Iskandarova, private communication
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Band structure for LaBr, (without La f
states). Energy scale is shifted to the top of
the valence band.
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Zn,Si0, (42 atoms per unit cell)
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Different cases to discuss

R.Kirkin, V.V. Mikhailin, and A.N. Vasil’ev, Recombination of correlated electron-hole pairs with account of hot capture with
emission of optical phonons, IEEE Transactions on Nuclear Science, vol. 59, issue 5, pp. 2057-2064 (2012)

e Simple oxide or fluoride (one LO branch)
hQ, , =0.1eV > k,T =300K =0.026 eV
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Different cases to discuss

R.Kirkin, V.V. Mikhailin, and A.N. Vasil’ev, Recombination of correlated electron-hole pairs with account of hot capture with
emission of optical phonons, IEEE Transactions on Nuclear Science, vol. 59, issue 5, pp. 2057-2064 (2012)

* Simple iodide (e.g. Csl, one LO branch)
hQ, , =0.01eV <k,T



0.01 0.1 1 0.01 0.1 1 10
15 ) : ) ) 14
10 : N N | N | .a_. ......Eg......l N .b...l N | N ......Elo

T A8
/ 1012

1™

_- EQLO: 0.1eV _1010

i — k0, =001eV |
f / 10

190 Ea— \ S
z 10”

1. g, S 10°

D (cm’/s)
=
o

[EEN
<

o
=
o
I C>
] MELALALLL B '\'""'l MERELRAALL |
= =
o o
= = =
& w N

00LkTO1 1 001kT 01 1 10
Electron energy E (eV) Electron energy E (eV)

S (eV/s)

D/S (cm/eV)



5 /L

Electron energy E (eV)

O-OO T | T |

o //
>

\

T M//' \I

— k0 =016V
— k0, =001eV

. “]:01014

T Ae
/ 1012

——ko_=01eV
—kQ =00leV

A\
\\
T
o
[EEN
[EEN

T
0 10 20 30 40 50 100 150

. /
Mean distance <r*>"* (nm)

I T
200

T
250 300

N
o
D/S (cm/eV)

T T LN R L) e A R T T T T T T T T T T, LB SRR L e R R AL T

(HEN

<
[
IS

- 0.01 'k';T"'dil ]
Electron energy E (eV)

S001kT 01 1

T

Electron energy E (eV)



Different cases to discuss

R.Kirkin, V.V. Mikhailin, and A.N. Vasil’ev, Recombination of correlated electron-hole pairs with account of hot capture with
emission of optical phonons, IEEE Transactions on Nuclear Science, vol. 59, issue 5, pp. 2057-2064 (2012)

e 2 LO branches with significantly different
energies

nQ ., =0.1eV,nQ ,,=0.01eV
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Different cases to discuss

R.Kirkin, V.V. Mikhailin, and A.N. Vasil’ev, Recombination of correlated electron-hole pairs with account of hot capture with
emission of optical phonons, IEEE Transactions on Nuclear Science, vol. 59, issue 5, pp. 2057-2064 (2012)

* 2 LO branches with close energies
nQ 5, =0.1eV, nQ2 ,, =0.08 eV



Interaction with LO phonons in LO-passive region

* One LO branch (2 atoms/unit cell) — Spatial diffusion is due to LO phonons,

and energy relaxation is due to LA phonons)
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Outline

* Interconnection of cascade, thermalization and
recombination stages in binary iodides



Starting states for thermalization
(Exin<Eg)

Band structure calculations
from W. Setyawan, R. M. Gaume et al. IEEE TNS, 2009

e-e passive region in CB
after all e-e scattering
events is filled mostly in
low energy part




Starting states for thermalization
(Exin<Eg)

Band structure calculations
from W. Setyawan, R. M. Gaume et al. IEEE TNS, 2009

Thermalization length
depends on kinetic
energy as (E,;)3?
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Spatial distribution of
thermalized electrons

Analytical estimation
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Spatial distribution, nm

Spatial distribution of
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 Why cascade is so effective in Csl?



Transitions from 5pCs core levels
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FIG. 2. Excitation spectra of CslI luminescence: the FIL (300
<) (thick) and of triplet exciton (100 K) (thin) compared with
’sI absorption (dashed).



From core-valence transitions to Auger process
in cesium halides
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Radiative decay
of 5pl core hole
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Starting states for thermalization
(Exin<Eg)

Photon Yield (photons/keV)
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e-e passive region in CB after all e-e
scattering events is filled mostly in low
energy part with account for Auger
relaxation of 5pl holes
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Estimation of 3 decreases significantly!
Creation of each 5pl hole with
threshold energy 13 eV produces 2 e-h
pairs, one electron and both holes of

which has low kinetic energy!



Outline

 Thermalization length and impurities



Elastic scattering on impurities and carriers

1:V0N= 2E
T m’

. OoN

Charged impurities/carriers: Conwell & Weisskopf (Phys. Rev. 77, 388-390, 1950)
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Neutral impurities
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Elastic scattering on impurities and carriers
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Scattering on impurities is the limiting factor for thermalization length only for
crystals with high LO phonon energies in LO-passive region for high concentrations of
neutral (>0.5%) impurities and for high concentration of carriers (>1018 cm1)



Conclusions

The development of comprehensive model of scintillator
based on multi-particle consideration of multi-scale evolution
of strongly non-equilibrium excited region on the basis of
deep directional experimental investigations allows to

Make a progress in fundamental physics

Obtain new results in applied physics — e.g. by justification
that mixed crystals is a way to improve scintillator properties

Be useful in pragmatic sense, because it is a background for
new material development (industrial applications)



Thank you for your attention
and cooperation!
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