Nanophysics for scintillation registration: Advantages and limits

Christophe Dujardin

Institute of Light and Matter University Lyon1 & CNRS 10 rue Ada Byron christophe.dujardin@univ-lyon1.fr

Shapping scintillators

Single Crystal

Many applications

Inorganic Fibers

Calorimetry?

CsI:TI Needles

Medical x-ray imaging

CsI-NaCl eutectic

@Canon, Adv. Mat. 2012

Thin films

High resolution x-ray imaging

Phosphor powder

x-ray imaging

Shapping scintillators: Nano?

- New physics?
- New materials?
- New functionalities?

This is our job.

Nanoscintillators: Bibliography

Web of Sciences $\rightarrow \sim 130$ papers combining nano* x Scintillat* (except nanosecond) (01/2013)

- 66 correspond to synthesis procedures of compositions of interest for scintillation
- 16 describe some scintillation properties
- 44 deal with some potential applications (most of them are about precursor for transparent ceramics)
- 4 are general/review papers

 \rightarrow rather open field

Processes: Specificity of nanosizes?

New Physics: \(\beta . S. Q \) (with A.L.Bulin & A.Vasil'ev)

Distribution of energy deposition after primary interaction

15keV electrons in various materials

http://www4.nau.edu/microanalysis/Microprobe-SEM

 \rightarrow dimension \gg nanosizes

New Physics: $\beta.S.Q$ (with A.L.Bulin & A.Vasil'ev)

Distribution of energy deposition after primary interaction

15keV electrons in various materials

http://www4.nau.edu/microanalysis/Microprobe-SEM

 \rightarrow dimension \gg nanosizes

 e^- created in a NP of 50nm case of (Gd_2O_3)

New Physics: β . S. Q, with A.N Vasil'ev & A.Belsky

Interaction with Phonons

Kirkin et al. IEEE-TNS 2012

New Physics: β . S. Q, with A.N Vasil'ev & A.Belsky

Interaction with Phonons

Kirkin et al. IEEE-TNS 2012

- Optical branch → flat
- nano $\rightarrow \lambda_{max} \geqslant 2L_{nano} \rightarrow k \sim 0$ "vanish"
- no effects on optical modes
- cut off of acoustical mode

probably no effect of nano sizes regarding this aspect

New Physics: **B.S.Q**

Potential barrier for low energy electrons

Nanotechnologies use to play with potential barriers and Gap

Bonghwan Chon, PhysChem, ChemPhys, 2009

New Physics: **B.S.Q**

Potential barrier for low energy electrons

Nanotechnologies use to play with potential barriers and Gap

Bonghwan Chon, PhysChem, ChemPhys. 2009

Assembly of core-shell system might create structured potentials

Effect on spacial distribution of charges during relaxation \rightarrow non-proportionnality?

Excitons

 As for low energy electrons and holes, excitons have a mobility
 → effect on the rise time in case of transfer to activator?
 → potential barrier at the particle edge?

Excitons

- As for low energy electrons and holes, excitons have a mobility
 → effect on the rise time in case of transfer to activator?
 → potential barrier at the particle edge?
- Charging effect → Auger process instead of radiative recombination (blinking of QD)

Smider et. Al., Materials Today, 2001

Galland et. al., Nature Comm., 2012

Traps

Traps might be different in nanoparticles

Stress

Large Surface/Volume ratio

Decrease of surface-to-volume ratio

P.Sonström et. al., Phys.Chem.Chem.Phys, 2011 Pt, $2nm \rightarrow 50\%$ of the atoms at the surface

Traps

Traps might be different in nanoparticles

Stress

Large Surface/Volume ratio

Decrease of surface-to-volume ratio

P.Sonström et. al., Phys.Chem.Chem.Phys, 2011 Pt, $2nm \rightarrow 50\%$ of the atoms at the surface

Exemple with LSO (25-100nm) as precursor for ceramics

Effect on afterglow, Bright Burn / might be good for Photostimulation applications

Traps: example with Silicon

- Indirect band gap → the yield is driven by the defect concentration
- at small sizes, the probability to find a bulk defect is smaller
- at very small sizes, surface defects → requires surface passivation

Evolution of the Light Yield with the size

Ledoux, Applied Phys. Let., 2002

Surface = bad for luminescence

- Well-known in semi-conductor QD
 → confinement of charges
- in doped insulator, a lot of activators are next to the surface
 - \rightarrow surface treatment are required

Huignard et. al., J.Phys.Chem. B. 2003

Surface = bad for luminescence

- Well-known in semi-conductor QD
 → confinement of charges
- in doped insulator, a lot of activators are next to the surface
 - ightarrow surface treatment are required

Huignard et. al., J.Phys.Chem. B. 2003

STE emission of 20nm and 140nm CaF_2 particles \rightarrow effect of thermalization length

Vistovskyy et. al., J. of Applied Phys., 2012

- ightarrow no improvement and even some losses are expected in very efficient materials
 - → but potential improvements for materials having non-radiative recombinations

Effects on Luminescence

$\mathsf{Disorder} \to \mathsf{Broadening}$

Dujardin et. al., IEEE TNS, 2010

Effects on Luminescence

$\mathsf{Disorder} \to \mathsf{Broadening}$

Dujardin et. al., IEEE TNS, 2010

$\begin{array}{c} \text{Ionic materials} \sim \text{No confinement} \\ \text{effect on gap} \end{array}$

Mercier et. al., J.Chem. Phys., 2007

Effects on Luminescence: Dielectric confinement

The radiative decay time depends on the index of refraction which is a macroscopic parameter

Effects on Luminescence: Dielectric confinement

The radiative decay time depends on the index of refraction which is a macroscopic parameter

several models: Fully macroscopic, empty and virtual cavity

LeBihan et. al., PRB, 2008

ightarrow nano-LuAG:Ce au= 117ns vs 58ns in bulk (Barta et.al. J.Mat.Chem,2012)

In addition, competition between radiative and non-radiative

probabilities:
$$\eta = \frac{W_{rad}(n)}{W_{rad}(n) + W_{nonrad}}$$

Difficulties

Experimental difficulties

The physicist wants

- size gradient over a wide range
- sharp size and shape distribution
- identical surface states
- single phase domain
- ...

Difficulties

Experimental difficulties

The physicist wants

- size gradient over a wide range
- sharp size and shape distribution
- identical surface states
- single phase domain
- ...

The chemist provides

 \rightarrow difficult for comparison

Applications

nanoparticles are small

 \rightarrow they can be mixed into matrix while preserving transparency

ZnS:Mn NP dispersed in PMMA

http://chm.tu-dresden.de

Applications

nanoparticles are small

ightarrow they can be mixed into matrix while preserving transparency

ZnS:Mn NP dispersed in PMMA

http://chm.tu-dresden.de

Colloïdale solution

@ILM

http://www.webexhibits.org

 \rightarrow hybrides & liquid scintillators

Applications-Hybrides

Doping with nano particles Claimed advantages: low cost as compared to single crystals

CdSe/ZnS Qdots in glasses

Figure 1. Picture of a 1/16 in. thick nanoporous glass slab impregnated with CdSe/ZnS quantum dots emitting at 510 nm.

Letant et. al. NanoLetters, 2006

Nevertheless, some scintillation can be observed

Applications-Hybrides

In the same spirit, but with LaF_3 : Ce^{3+} but in organics

Figure 1. Transmission electron microscopy image of the Ce:LaF₃ particles (left) and a 1cm thick oleic-based nancomposite of Ce:LaF₃ with nearly 30% volume loading of the phosphor.

McKigney et. al., NIMA, 2007

issue \rightarrow high loading while preserving the transparency & properties

personal opinion:

not sure that it can compete with crystals regarding performances.

Application-Hybride

US Congres report

Detection of Nuclear Weapons and Materials: Science, Technologies, Observations

Ionathan Medalia

Specialist in Nuclear Weapons Policy

June 4, 2010

...However, unexpected nanoscale physics could impair energy resolution...

Application-Hybride

Doping organics with optically "active" nano particles specific functionality: neutron detection/ increase of density

GdBr3:Ce in glass matrix as nuclear spectroscopy detector

Z.T. Kang, R. Rosson*, B. Barta, C. Han, J.H. Nadler, M. Dorn, B. Wagner, B. Kahn Georgia Tech Research Institute, Georgia Institute of Technology, 925 Dalney St NW, Atlanta, GA 30332, USA

Fig. 1. Cerium-activated gadolinium bromide glass-matrix cylinder, 2.5-cm dia. × 3.0- Fig. 3. Five gamma-ray spectra with 2.5-cm dia., 3.0-cm height, alumina-silica glasscm height, under 365 nm UV illumination.

matrix detector at gain 400.

Application-New Materials

Doping organics with optically "passive" nano particles Journal of Materials Chemistry C

Synthesis of bulk-size transparent gadolinium oxidepolymer nanocomposites for gamma ray spectroscopy Cite this: J. Mater. Chem. C, 2013, 1, Wen Cai,†ad Qi Chen,†a Nerine Cherepy,b Alex Dooraghi,c David Kishpaugh,a Arion Chatziioannou, Stephen Payne, Weidong Xiangd and Qibing Pei*a

RSCPublishing

Application-New Materials

Improving Organic Scintillators

Application-New Materials

Improving Organic Scintillators

Out of traditional scintillators: MOF Metal Organic Framework

www.advmat.de ADVANCED MATERIALS

Scintillating Metal-Organic Frameworks: A New Class of Radiation Detection Materials

By F. P. Doty, * C. A. Bauer, A. J. Skulan, P. G. Grant, and M. D. Allendorf*

https://share.sandia.gov

Application-Liquid Scintillation

Various applications: metrology, neutrino

 $\mathsf{Toluene} + \mathsf{PPO} \; \mathsf{molecule}$

- molecule ↔ active nanoparticles?
- Advantage: large Stokes shift
- Drawbacks: stabilization of high concentration & knowledge about energy transfers?

Application-Liquid Scintillation

Various applications: metrology, neutrino

Toluene + PPO molecule

- molecule ↔ active nanoparticles?
- Advantage: large Stokes shift
- Drawbacks: stabilization of high concentration & knowledge about energy transfers?

One example

Winslow et. al., JINST, 2012

In this case the Stokes shift is not so large, cost???

new physics?

- yes: around the spacial distribution of excitation during relaxation
- yes: around the interactions with their surrounding (hybrid)

new physics?

- yes: around the spacial distribution of excitation during relaxation
- yes: around the interactions with their surrounding (hybrid)

new chemistry?

- yes: optimum sizes are different from other field
- yes: can be combined with other compounds

new physics?

- yes: around the spacial distribution of excitation during relaxation
- yes: around the interactions with their surrounding (hybrid)

new chemistry?

- yes: optimum sizes are different from other field
- yes: can be combined with other compounds

new materials?

- yes: hybrides & nano composites
- yes: liquid scintillation

new physics?

- yes: around the spacial distribution of excitation during relaxation
- yes: around the interactions with their surrounding (hybrid)

new chemistry?

- yes: optimum sizes are different from other field
- yes: can be combined with other compounds

new materials?

- yes: hybrides & nano composites
- yes: liquid scintillation

worth investigating

