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The aim of the study:

oligoperoxide based routes of tailored 
synthesis and functionalization of

luminescent and scintillation
nanocomposites for biology and 

medicine



Talk outline

.

I. The main routes of the synthesis and functionalization of 
luminescent and scintillation polymeric and mineral 

nanocomposites

II. Opportunities of  biomedical application of luminescent and 
scintillation nanoparticles for  cell detection, tagging  and 

treatment.
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I. The main routes of the synthesis 
and functionalization of 

luminescent and scintillation 
functional polymer coated 

nanocomposites



I. The main routes of the synthesis and functionalization of 
luminescent and scintillation polymeric and mineral 

nanoparticles
I.1. Synthesis of polymer based salts and complexes of rare earth 

elements with oligoperoxide ligands (OMC) and luminescent polymeric 
nanoparticles (30 – 150nm) via water dispersion polymerization initiated 

and stabilized by OMC.
I.2. Synthesis of oligoperoxide and derived oligoelectrolyte surfactants 
containing luminescent fragments as a result of reactions with reactive 

phosphors.

I.3. Formation of micelle-like assemblies formed by oligoperoxide or 
oligoelectrolyte surfactants containing organic phosphors in 

hydrophobic core.

I.4. Synthesis of oligoelectrolyte based nanogels containing coordinated 
rare earth cations or filled with organic phosphors in the pores.



I. The main routes of the synthesis and functionalization of 
luminescent and scintillation polymeric and mineral 

nanoparticles

I.5. Encapsulation of the phosphors (fluorescein, pyrazolyne and others) 
in the core of functional polymeric nanoparticles via water dispersion 

polymerization.

I.6. Template synthesis of functionalized mineral nanoparticles of LaPO4, 
LuPO4, LuBO3, GdF3, CaF2, BaF2 doped with Pr+3, Ce+3, Eu+2 and Eu+3

and oligoperoxide shell capable of grafting functional polymer chains.



The general structure of surface - active linear oligoperoxides

I.1. Copolymerization of unsaturated ditertiary peroxides with 
functional monomers.
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I.1. Coordinating complexes of rare earth elements with
oligoperoxide ligands (OMC) and polymeric nanoparticles

synthesized via water dispersion polymerization initiated by 
OMC.

The scheme of the synthesis and functionalization of luminescent polymer NPs



I.1. Coordinating complexes of rare earth elements with
oligoperoxide ligands (OMC) and polymeric nanoparticles

synthesized via water dispersion polymerization initiated by 
OMC.
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Luminescence spectrum (b) of Eu+3 containing OMC (1) and polymer NPs (2) 
synthesized in the presence of OMC; TEM images of luminescent NPs (c).

I.1. Coordinating complexes of rare earth elements with
oligoperoxide ligands (OMC) and polymeric nanoparticles

synthesized via water dispersion polymerization initiated by 
OMC.



I.2. Synthesis of oligoperoxide and oligoelectrolyte surfactants 
containing luminescent organic fragments.
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I.2. Synthesis of oligoperoxide and derived oligoelectrolyte
surfactants containing luminescent organic fragments.
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I.2. Synthesis of oligoperoxide and oligoelectrolyte surfactants 
containing luminescent organic fragments.
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The excitation and emission spectra of VA-VEP-MA-HEMA+FITC-
graft-VEP-DMAEM branched copolymer
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I.2. Synthesis of oligoperoxide and derived oligoelectrolyte
surfactants containing luminescent fragments as a result of 

reactions with reactive phosphors.



I.3. Micelle-like assemblies formed by oligoperoxide or 
oligoelectrolyte surfactants solubilizing organic phosphors in 

hydrophobic core.

Scheme of solubilization of water-insoluble organic phosphors in the core of 
micelle forming oligoperoxide surfactants in water
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I.3. Micelle-like assemblies formed by oligoperoxide or 
oligoelectrolyte surfactants containing organic phosphors in 

hydrophobic core.
Coordinating metal complex was synthesized by prof. S. Meshkova, Bogatskiy

Physico-Chimical Institute of NASU

Eu (TTA)3TFFO,  where TTA - thenoyltrifluoroacetone, TFFO -
triphenylphosphineoxide



I.3. Micelle-like assemblies formed by oligoperoxide or 
oligoelectrolyte surfactants solubilizing organic phosphors in 

hydrophobic core.
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The excitation and emission spectra of Eu3+ for Eu (TTA) in the micelle
hydrophobic zones of oliogoperoxide surfactants
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I.4. Oligoelectrolyte based nanogels containing coordinating 
rare earth cations or organic phosphors in the pores.

The scheme of the formation of 
luminescent carboxyl-containing 
gel carriers and loading poor 
water soluble drugs

Luminescent spectrum of coordinatung
complex of Eu3+ with carboxyls of 
nanogel. Excitation at 397nm (1); 387nm -
(2); 300nm – (3).
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I.4. Oligoelectrolyte based nanogels containing coordinating rare 
earth cations or organic phosphors in the pores.
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I.4. Oligoelectrolyte based nanogels containing coordinating 
rare earth cations or organic phosphors in the pores.

The excitation and emission spectra of 
nanogel water dispersions with the 
adsorbed complex Eu (TTA) 3TFFO, 
[nanogel]=3%(1) and 6% (2)([Eu 
(TTA)3·TFFO] =1% per nanogels)
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Water dispersions of nanogels
containing 3% (a), 1% (b), 0.5% 
(c) of complex Eu(TTA)3TFFO



I.4. Oligoelectrolyte based nanogels containing coordinating 
rare earth cations or organic phosphors in the pores.

Optical microscope images of nanogels containing luminescent complex 
Eu (TTA)3⋅TFFO a) differential-interferential contrast, b) fluorescence
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I.5. Encapsulation of phosphors in the core of functional 
polymeric nanoparticles via water dispersion polymerization.
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I.5. Encapsulation of phosphors in the core of functional 
polymeric nanoparticles via water dispersion polymerization.
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The dependences of relative in respect of charged amount (1) and total (2) 
contents of fluorescein encapsulated per one functional nanoparticle on 
nanoparticle size. (■,×– monomer mixture: STR:SAM, initiator – PA, 
●,♦– monomer mixture: STR:SAM, initiator – OMC, ▲,▼– monomer 
mixture: MMA-BA-GMA:SAM, initiator – OMC)
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I.5. Encapsulation of phosphors in the core of functional 
polymeric nanoparticles via water dispersion polymerization.

FT-IR spectrum of polymeric NPs containing encapsulated fluorescein, 
copolymer of St and SAM (1, 2) and core-shell type NPs (3,4)



I.5. Encapsulation of phosphors in the core of functional 
polymeric nanoparticles via water dispersion polymerization.

TEM images of functional polymeric NPs synthesized via water dispersion 
polymerization of styrene with SAM at St: SAM ratio 90:10 initiated by 
OMC: 1 – without fluorescein (FL), 2 – [FL] =0.1% per St, 3 – [FL] =0.5% 
per St, and initiated by PA, [FL] =0.1% per St (3)



I.5. Encapsulation of phosphors in the core of functional 
polymeric nanoparticles via water dispersion polymerization.
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Green fluorescence of fluorescein
and FITC-encapsulated polystyrene 
nanoparticles (PSFITS а) in water 
based systems at distinct dilution 
(PSFITS а/2, a/4, a/6)



The scheme of the lantanide nanoparticle template synthesis

I.6. Functional mineral nanoparticles of LaPO4, LuPO4, 
LuBO3, GdF3, CaF2, BaF2 core doped with cations of Pr+3, 

Ce+3, Eu+2, Eu+3.
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Influence of the nature of oligoperoxide shell on the surface of nanoparticles
on intensity of their luminescence 
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I.6. Functional mineral nanoparticles of LaPO4, LuPO4, 
LuBO3, GdF3, CaF2, BaF2 core doped with cations of Pr+3, 

Ce+3, Eu+2, Eu+3.
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X-Ray patterns of
nanoparticles LaPO4-

Eu

The luminescence spectra of 
nanoparticles LaPO4-Eu; 
T=10 K.

X-ray patterns of LaPO4…Eu3+ nanoparticles annealed at different
temperature (a) and spectrum of their luminescence (b): hexagonal lattice
(blue) and monoclinic lattice (red) 

I.6. Functional mineral nanoparticles of LaPO4, LuPO4, LuBO3, 
GdF3, CaF2, BaF2 core doped with cations of Pr+3, Ce+3, Eu+2, Eu+3
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I.6. Functional mineral nanoparticles of LaPO4, LuPO4, 
LuBO3, GdF3, CaF2, BaF2 core doped with cations of 

Pr+3, Ce+3, Eu+2, Eu+3
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Spectrum of X-ray excited nanoparticles LaPO4…Pr annealed at 800С
(1) and the same nanoparticles after adsorption activation with

oligoperoxide surfactant and subsequent radical grafting polystyrene 
shell (2) 

I.6. Functional mineral nanoparticles of LaPO4, LuPO4, 
LuBO3, GdF3, CaF2, BaF2 core doped with cations of Pr+3, 

Ce+3, Eu+2, Eu+3
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•Controlled physically detectable characteristics of nanocomposites and 
nanoshells

•Presence of peroxide links on particle surface provides tailored particle 
functionalization (epoxide, aldehyde, maleimide etc.) via graft 

copolymerization.
•Availability of controlled reactive functionality on nanoparticle surface 
provides attachment of cell recognizing biological vectors (saccharides, 

lectins, antibodies).  

Why such oligoperoxide based luminescent 
nanocomposites and nanolayers?

•Controlled particle size and size distribution

•Controlled functionality and reactivity
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II. Cellular studies and potential 

biomedical application for

cell detection, tagging  and treatment.

* Cellular study was fulfilled in Lviv Institute of Cell Biology 

under the guidance of Professor R. Stoika
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II. Cellular studies and potential biomedical application for 
pathological cell detection, tagging  and treatment.

Labeling dying cell by fluorescein-encapsulated functional nanoparticles
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II. Cellular studies and potential biomedical application for 
pathological cell detection, tagging  and treatment.

A - BSA-conjugated fluorescein-containing nanoparticles (~200 nm) are bound to murine macrophages of J774.2 line after 
20 min incubation. DIC with superimposed fluorescent image. B – Ig-conjugates fluorescein-containing nanoparticles (~300 
nm) were injected into the peritoneal cavity of mice. After 20 min and 24 h, peritoneal cells were removed, washed, 
concentrated and studied. Top panel – fluorescent microscopy; lower panel – light microscopy. Macrophages (indicated by 
arrow) were identified on the basis of their morphology and propidium iodine (20 min, red color) or DAPI counterstaining 
(not shown). Note that after 24 h NPs were digested by the macrophages

Targeted biodegradation of polymeric nanoconjugates
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II. Cellular studies and potential biomedical application for 
pathological cell detection, tagging  and treatment.

Engulfment of functional oligoelectrolyte based nanogels filled with complex 
Eu(TTA)3 TFFO by melanoma cells; concentration of nanogels in water 

dispersion – 0.1%, a) 1 microliter per 1 ml of cultural medium; b) 10 
microliter per 1 ml of cultural medium (incubation 24h)
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Engulfment of pyrazolyn-containing functional polymeric nanoparticles by 
melanoma cells; concentration of nanparticles in water dispersion – 0.1%, a) 1 
microliter per 1 ml of cultural medium; b) 10 microliter per 1 ml of cultural 
medium (incubation 24h)

ba

II. Cellular studies and potential biomedical application for 
pathological cell detection, tagging  and treatment.



Engulfment of functional nanosized scintillators based on LaPO4…Eu by 
human melanoma cells line SK-MEL-28.

II. Cellular studies and potential biomedical application for 
pathological cell detection, tagging  and treatment.
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